

CONEXANT

Advanced Packaging of Image Sensors

Usama Abdali Newport Beach, CA

Image Sensors: the heart of digital cameras

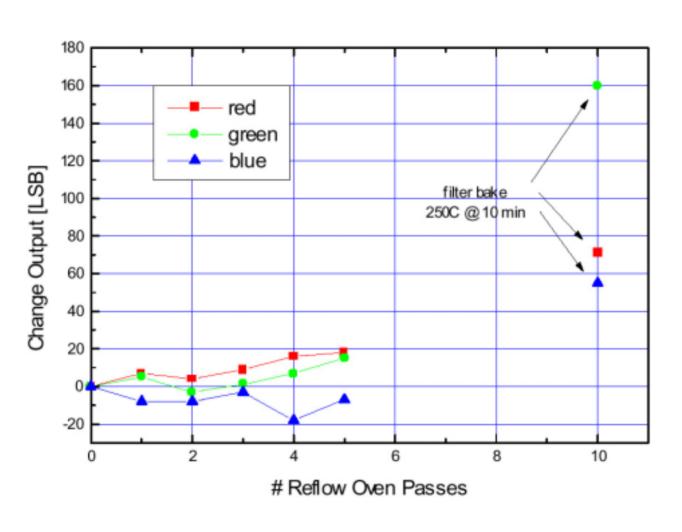
Images taken with Conexant SXGA (1280 × 1024)
1.3 megapixel image sensor

Outline

- Special requirements for image sensor packaging
- Traditional packaging for digital still cameras
- Additional requirements for wireless handset camera modules
- Case #1: Encapsulated package
- Case #2: Chip scale package

Special packaging requirements

- Limited process temperatures
- Optically transparent material
- Contamination control during packaging
- Alignment of image sensor package to optics mechanism
- Package Test


Limited process temperatures

- Two types of color filter materials:
- Organic dyes
 - Maximum process temperatures can be limited to 150°C or lower
 - May require low temperature die attach process and low temperature wirebonding
 - Might not be solder reflow compatible
- Pigments
 - Allows higher process temperatures
 - Can be solder reflow compatible
- Microlens materials can also be affected by temperature

Effect of temperature on color filters

After 250°C bake

Red: -9%

Green: -24%

Blue: -8%

Red - Cyan Green - Magenta Blue - Yellow

Optically transparent materials

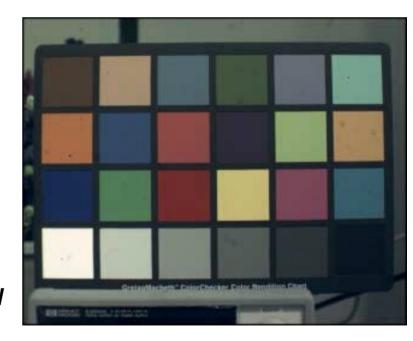
Choices are limited:

Glass

- 98-99% transmittance of visible light
- expensive
- difficult to handle

Clear Organics

- 90-92% transmittance of visible light
- susceptible to degradation
- large thermal expansion mismatch with die


Optically transparent materials, cont.

Glass lid

Organic
- after 3
passes of
solder reflow

Contamination control

- VGA-format image sensors contain over 300,000 pixels
- Typical pixel sizes range from 5-10 µm and are shrinking
- Contamination on die surface can be visible in image
- May be possible to correct for bad pixels in software
- Contamination far from the die surface is not in focus

Alignment of sensor to optics

- Wide range of techniques for image sensor-optics alignment:
- Low end "toy" digital cameras: simple assembly with no real alignment
- High-end digital cameras: precision active alignment, e.g. 6axis robotic alignment fixtures
- Middle ground: passive alignment of image sensor and optics to the same datum features

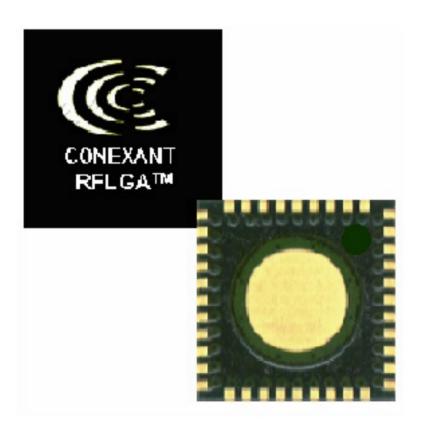
Package test

- Cannot contact surface of package above the active area of the image sensor, but must make reliable contact
- Must integrate a well-characterized and well-calibrated light source into the test handler (e.g. Tungsten-Halogen 3200°K)
- Must maintain flatness and parallelism if testing with optics

Traditional Imager Packaging Approach

- Ceramic or Plastic cavity package (LCC) with glass lid
- Package cost is high based on number of I/O
- LCC form factor is too large and expensive for embedding into wireless handsets

Wireless handset camera module

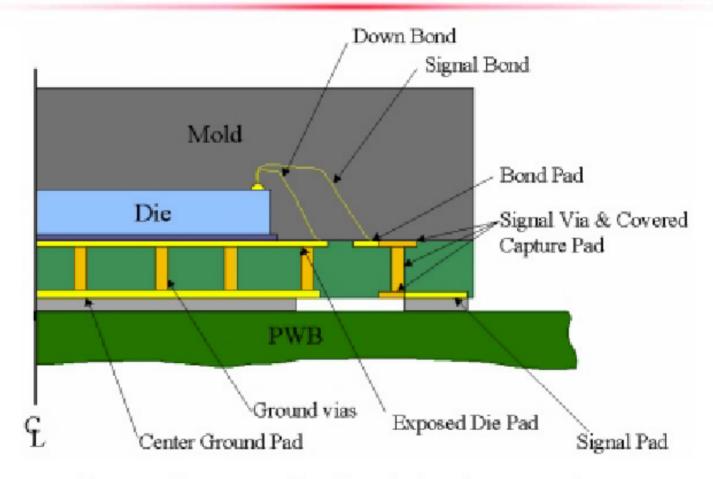


- Customer requirements:
- CIF or VGA format image sensor; both still and video imaging
- Integrated optics assembly and image-processing ASIC
- 2.7V power supply; power consumption < 100 milliwatts
- Complete module occupies < 1 cc
- Total price for sensor, package, optics, and ASIC < \$10
- Low Z-height is one of the most critical parameters for wireless handsets manufacturers

Case #1: Encapsulated Imager Package

 Modeled on Conexant's Radio Frequency Land Grid Array Overmolded Package (used for transceivers)

Advantages:


- In-house assembly and test capability
- Low cost, high volume product
- Thin form factor

Top and bottom view of a 6x6, 40 pin RFLGA.

14

Optical Land Grid Array Package

Half-symmetric representation of a typical RFLGA cross section.

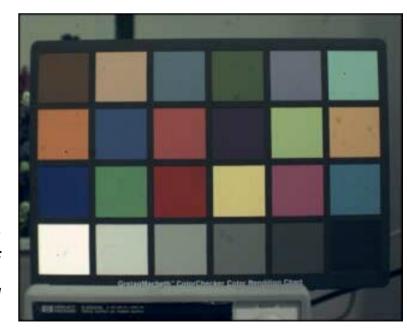
Replace overmold with dam-and-fill (clear encapsulant)

Optical LGA Process Flow

- Wafer Saw
- Die Attach to laminate substrate
- Plasma Clean
- Wire Bond
- Dam and Fill Dispensing or Printing*
- Branding*
- Saw Singulation of matrix*
- Electrical and optical testing*

* new process development required

Transmission through encapsulant



- Clear encapsulant material transmits 90-92% of visible light
- Solder reflow had minimal impact on image quality

Glass lid

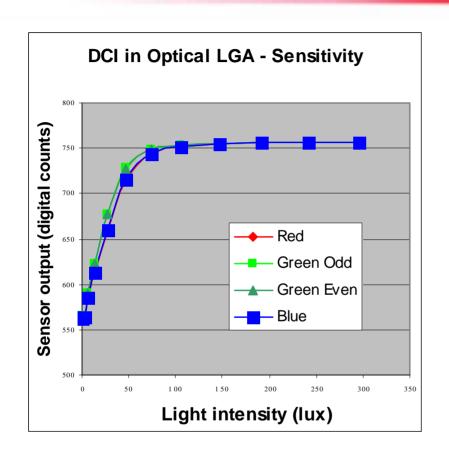
- after 3 passes of solder reflow

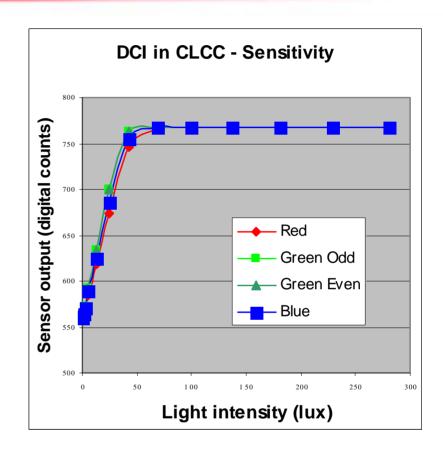
Optical Characterization

Optical LGA				CLCC		
Sensitivity	(counts/lux.sec)		Sensitivit	y (counts/lux	(counts/lux.sec)	
	Channel			Channel		
Red	Green	Blue	Red	Green	Blue	
22.15	26.04	22.57	28.7	7 34.81	31.7	
	PRNU @ 1	1.2lux(%)		PRNU @ 1	.2lux(%)	
	Channel			Channel		
Red	Green	Blue	Red	Green	Blue	
2.47	1.92	3.3	1.6	5 1.39	1.5	
Noise			Noise			
PTN	0.238845	counts	PTN	0.1656567	counts	
PFPN	0.998999	counts	PFPN	1.3694735	counts	
CFPN	52.99283	counts	CFPN	52.892271	counts	
RFPN	0.154281	counts	RFPN	0.1109943	counts	
RTN	0.016778	counts	RTN	0.0190503	counts	
CTN	0.014118	counts	CTN	0.0100404	counts	

Photosensitivity in red, green, & blue channels

Pixel Response


Non-Uniformity


in flat field (no lens)

Noise (measured "in the dark")

Optical Characterization, cont.

The Optical LGA and CLCC had similar sensitivity, pixel response non-uniformity, and noise values.

Optical LGA Reliability

- JEDEC Level 4 Preconditioning
- 85°C / 85% RH
- Thermal Cycling
- 125°C High Temperature Storage
- 10,000 Lux Light Exposure
- Failures seen after 85/85 and thermal cycling
- C-SAM shows delamination of encapsulant from substrate due to CTE mismatch

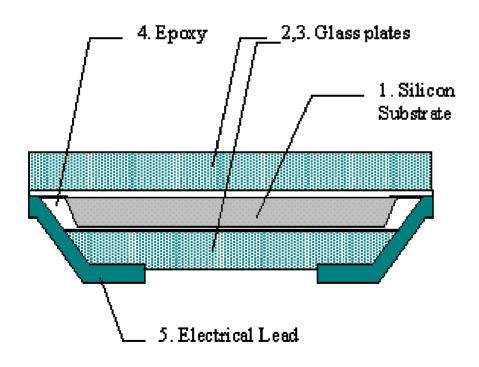
Optical LGA Feasibility Summary

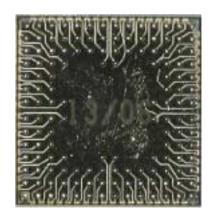
Optical Performance & Characterization

Preliminary results show comparable performance between Optical LGA package and CLCC

Package Reliability

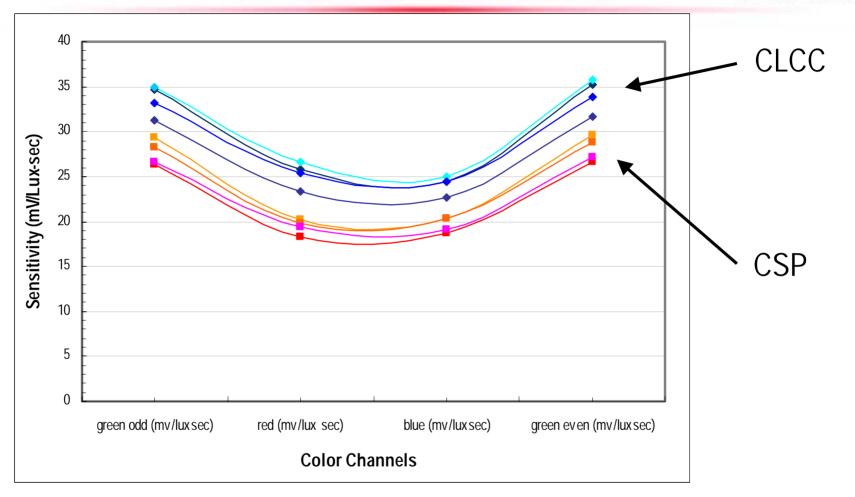
 Package delamination failures seen - due to CTE mismatch between clear encapsulant and substrate


Future Work


Investigate alternate clear encapsulant materials with lower CTE

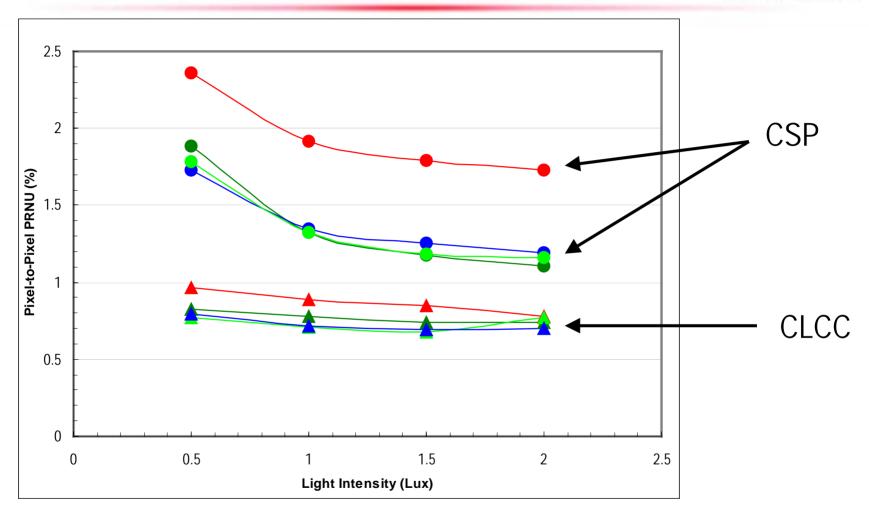
Case #2: Chip Scale Imager Package

- Wafer-level CSP
- Smaller, thinner, and lower cost than Optical LGA


Optical Characterization

- Compared CSP to CLCC performance with Conexant SXGA die
 - Photosensitivity in R, G, and B
 - Pixel Response Non-Uniformity
 - Noise
 - Power Consumption
- Expect that construction of CSP will reduce benefit of microlenses (no air gap - smaller Δ in refractive index)
- Maximum benefit of microlens in this system is 2X

Photosensitivity



- CSP has 15-20% less sensitivity than CLCC
- Red and Blue responses lower than Green for both packages

Pixel Response Non-Uniformity

- CSP has higher PRNU, but within acceptable range
- Higher Red PRNU due to higher cross-talk

Noise and Power Consumption

- No distinct difference between CLCC and CSP in column fixed pattern noise and pixel fixed pattern noise
- No difference in power consumption

CSP Reliability

- Because of limited sample size, concentrated on temperature cycling and 85/85
- JEDEC Level 4 Preconditioning
- 85°C / 85% RH
- Thermal Cycling
- No failures seen

CSP Imager Package Summary

- Performance is similar to CLCC package, except for some degradation in photosensitivity
- Preliminary reliability results encouraging, need more thorough evaluation
- Challenges: automated test of small, thin imager sensor package